Detection and Identification of Effluent Gases Using Invariant Hyperspectral Algorithms

نویسنده

  • Erin O’Donnell
چکیده

The ability to detect and identify effluent gases is a problem that has been pursued with limited success. An algorithm to do this would not only aid in the regulation of pollutants but also in treaty enforcement. Considering these applications, finding a way to remotely investigate a gaseous emission is highly desirable. This research utilizes hyperspectral imagery in the infrared region of the electromagnetic spectrum to evaluate invariant methods of detecting and identifying gases within a scene. The image is evaluated on a pixel-by-pixel basis and is also studied at the subpixel level. A library of target gas spectra is generated using a simple radiance model. This results in a more robust representation of the gas spectra which are representative of real-world observations. This library is the subspace utilized by the detection and identification algorithm. An evaluation was carried out to determine the subset of basis vectors that best span the subspace. Two basis vector selection methods are used to determine the subset of basis vectors; Singular Value Decomposition (SVD) and the Maximum Distance Method (MaxD). The Generalized Likelihood Ratio Test (GLRT) was used to determine whether the pixel is more like the target or the background. The target can be either a single species or a combination of gases, however, this study only looks for iv

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and detection of gaseous effluents from hyperspectral imagery using invariant algorithms

The ability to detect and identify effluent gases is, and will continue to be, of great importance. This would not only aid in the regulation of pollutants but also in treaty enforcement and monitoring the production of weapons. Considering these applications, finding a way to remotely investigate a gaseous emission is highly desirable. This research utilizes hyperspectral imagery in the infrar...

متن کامل

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing

  The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004